REFERENCES
 

General Motor Learning

Allami, N., Hamzaoui, E. M., Regragui, F., Paulignan, Y., & Boussaoud, D. (2014). Neurophysiological correlates of visuo-motor learning through mental and physical practice. Neuropsychologia, 55(1), 6–14. http://doi.org/10.1016/j.neuropsychologia.2013.12.017

Debas, K., Carrier, J., Orban, P., Barakat, M., Lungu, O., Vandewalle, G., … Doyon, J. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proceedings of the National Academy of Sciences, 107(41), 17839–17844. http://doi.org/10.1073/pnas.1013176107

Bassett, D. S., Yang, M., Wymbs, N. F., & Grafton, S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744-751. http://doi.org/10.1038/nn.3993

Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press

Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor Task Variation Induces Structural Learning. Current Biology, 19(4), 352–357. http://doi.org/10.1016/j.cub.2009.01.036

Butler, A. J., & Page, S. J. (2006). Mental Practice With Motor Imagery: Evidence for Motor Recovery and Cortical Reorganization After Stroke. Archives of Physical Medicine and Rehabilitation, 87(12 SUPPL.), 2–11. http://doi.org/10.1016/j.apmr.2006.08.326

Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P. F., Ugurbil, K., … Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. NeuroImage, 49(1), 759–66. http://doi.org/10.1016/j.neuroimage.2009.08.048

Creem-Regehr, S. H., & Kunz, B. R. (2010). Perception and action. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 800–810. http://doi.org/10.1002/wcs.82

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167. http://doi.org/10.1016/j.conb.2005.03.004

Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. C. (1996). Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. The European Journal of Neuroscience, 8(4), 637–48.

Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico- cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.

Ericsson, K., Charness, N., Feltovich, P., & Hoffman, R. (Eds.). (2006). The Cambridge Handbook of Expertise and Expert Performance (Cambridge Handbooks in Psychology). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511816796

Etnier, J. L., & Landers, D. M. (1996). The influence of procedural variables on the efficacy of mental practice. Sport Psychologist, 10(1), 48–57.

Etnier, J. L., Whitwer, S. S., Landers, D. M., Petruzzello, S. J., & Salazar, W. (1996). Changes in Electroencephalographic Activity Associated with Learning a Novel Motor Task. Research Quarterly for Exercise and Sport, 67(3), 272–279. http://doi.org/10.1080/02701367.1996.10607954

Fitts, P. M., & Posner, M. I. (1967). Human performance. Basic concepts in psychology series. Belmont, Calif.,: Brooks/Cole Pub. Co.

Gallwey, W. T. (1979). The Inner Game of Tennis. Toronto: Bantam Books.

Gentile, A. M. (1972). A Working Model of Skill Acquisition with Application to Teaching. Quest, 17(1), 3–23. http://doi.org/10.1080/00336297.1972.10519717

Gentile, A. M. (2000). Skill acquisition : Action, movement, and neuromotor processes. Movement Science, 111–187.

Gibson, E. J. (1969). Principles of perceptual learning and development. East Norwalk, CT, US: Appleton-Century-Crofts.

Goodwin, J. E., Grimes, C. R., Eckerson, J. M., & Gordon, P. M. (1998). Effect of different quantities of variable practice on acquisition, retention, and transfer of an applied motor skill. Perceptual and Motor Skills, 87(1), 147–151.

Grouios, G., Mousikou, K., Hatzinikolaou, K., Semoglou, K., & Kabitsis, C. (1997). The effect of a simulated mental practice technique on free throw shooting accuracy of highly skilled basketball players. Journal of Human Movement Studies, 33(3), 119–138.

Hallett, M. (1995). The Role of the Motor Cortex in Motor Learning. In Motor Control and Learning (pp. 89–95). Boston: Kluwer Academic Publishers. http://doi.org/10.1007/0-387-28287-4_8

Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage, 67, 283–297.

Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150. http://doi.org/10.3389/fnins.2014.00150

Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17(2), 149–50. http://doi.org/10.1038/nn.3633

Hinshaw, K. E. (1991). The Effects of Mental Practice on Motor Skill Performance: Critical Evaluation and Meta-Analysis. Imagination, Cognition and Personality, 11(1), 3–35. http://doi.org/10.2190/x9ba-kj68-07an-qmj8

Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445. http://doi.org/10.3200/JMBR.40.5.433-445

Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. http://doi.org/10.1016/J.BBR.2011.11.028

Lockhart, T., & Stergiou, N. (2013). New perspecives in human movement variability. Annals of Biomedical Engineering, 41(8), 1593–1594. http://doi.org/10.1007/s10439-013-0852-0

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In Cognitive skills and their acquisition. Hillsdale, NJ: Lawrence Earlbaum Associates, Inc.

Newell, K., & Vaillancourt, D. (2001). Dimensional change in motor learning. Human Movement Science, 20(4–5), 695–715. http://doi.org/10.1016/S0167-9457(01)00073-2

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. http://doi.org/10.1016/0010-0285(87)90002-8

Raisbeck, L. D., Regal, A., Diekfuss, J. A., Rhea, C. K., & Ward, P. (2015). Influence of practice schedules and attention on skill development and retention. Human Movement Science, 43, 100-106. http://doi.org/10.1016/j.humov.2015.07.004

Schmidt, R. A. (1975). Schema theory of discreet motor skill learning. Psychological Review, 82(4), 225–260. http://doi.org/10.1037/h0076770

Seidler, R. D. (2004). Multiple Motor Learning Experiences Enhance Motor Adaptability. Journal of Cognitive Neuroscience, 16(1), 65–73. http://doi.org/10.1162/089892904322755566

Seidler, R. D. (2010). Neural correlates of motor learning, transfer of learning, and learning to learn. Exercise and Sport Sciences Reviews, 38(1), 13. http://doi.org/10.1097/JES.0b013e3181c5cce7.Neural

Shadmehr, R., Smith, M. a, & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. http://doi.org/10.1146/annurev-neuro-060909-153135

Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning & Memory, 5(2), 179–187. http://doi.org/10.1037/0278-7393.5.2.179

Sherrington, C. (1948). The Integrative Action of the Nervous System. Charles Sherrington. The Quarterly Review of Biology, 23(4), 375–375. http://doi.org/10.1086/396709
Stergiou, N., & Decker, L. M. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection? Human Movement Science, 30(5), 869–88. http://doi.org/10.1016/j.humov.2011.06.002

Stratton, S. M., Liu, Y.-T., Hong, S. L., Mayer-Kress, G., & Newell, K. M. (2007). Snoddy (1926) Revisited: Time Scales of Motor Learning. Journal of Motor Behavior, 39(6), 503–515. http://doi.org/10.3200/jmbr.39.6.503-516

van der Wel, R. P., Sebanz, N., & Knoblich, G. (2012). The sense of agency during skill learning in individuals and dyads. Consciousness and Cognition, 21(3), 1267–1279. http://doi.org/10.1016/j.concog.2012.04.001

Wulf, G. (2007). Attention and motor skill learning. Champaign, IL: Human Kinetics.

Wulf, G., Hoss, M., & Prinz, W. (1998). Instructions for motor learning: differential effects of internal versus external focus of attention. Journal of Motor Behavior, 30(2), 169–179. http://doi.org/10.1080/00222899809601334

Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1143–1154. http://doi.org/10.1080/713756012

Wulf, G., & Schmidt, R. A. (1997). Variability of practice and implicit motor learning. Journal of Experimental Psychology-Learning Memory and Cognition, 23(4), 987–1006. http://doi.org/10.1037//0278-7393.23.4.987

Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic Bulletin & Review, 9(2), 185–211. http://doi.org/10.3758/BF03196276

Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. Medical Education, 44(1), 75–84. http://doi.org/10.1111/j.1365-2923.2009.03421.x

Zhu, F., Poolton, J., & Masters, R. (2002). 8 Neuroscientific aspects of implicit motor learnig in sport. Working memory’s neural network. Masters & Poolton Masters & Eves Masters & Poolton.

Neural Correlates of Motor Learning

Allami, N., Hamzaoui, E. M., Regragui, F., Paulignan, Y., & Boussaoud, D. (2014). Neurophysiological correlates of visuo-motor learning through mental and physical practice. Neuropsychologia, 55(1), 6–14. http://doi.org/10.1016/j.neuropsychologia.2013.12.017

Debas, K., Carrier, J., Orban, P., Barakat, M., Lungu, O., Vandewalle, G., … Doyon, J. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proceedings of the National Academy of Sciences, 107(41), 17839–17844. http://doi.org/10.1073/pnas.1013176107

Başar, E. (2008). Oscillations in “brain–body–mind”—A holistic view including the autonomous system. Brain Research, 1235, 2–11. http://doi.org/10.1016/J.BRAINRES.2008.06.102

Bassett, D. S., Yang, M., Wymbs, N. F., & Grafton, S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744-751. http://doi.org/10.1038/nn.3993

Bays, B. C., Visscher, K. M., Dantec, C. C. Le, & Seitz, A. R. (2015). Alpha-band EEG activity in perceptual learning. Journal of Vision, 15(10), 1–12. http://doi.org/10.1167/15.10.7.doi

Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor Task Variation Induces Structural Learning. Current Biology, 19(4), 352–357. http://doi.org/10.1016/j.cub.2009.01.036
Butler, A. J., & Page, S. J. (2006). Mental Practice With Motor Imagery: Evidence for Motor Recovery and Cortical Reorganization After Stroke. Archives of Physical Medicine and Rehabilitation, 87(12 SUPPL.), 2–11. http://doi.org/10.1016/j.apmr.2006.08.326

Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198–3209. http://doi.org/10.1016/j.neuroimage.2009.11.080

Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P. F., Ugurbil, K., … Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. NeuroImage, 49(1), 759–66. http://doi.org/10.1016/j.neuroimage.2009.08.048

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167. http://doi.org/10.1016/j.conb.2005.03.004

Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. C. (1996). Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. The European Journal of Neuroscience, 8(4), 637–48.

Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico- cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.

Etnier, J. L., Whitwer, S. S., Landers, D. M., Petruzzello, S. J., & Salazar, W. (1996). Changes in Electroencephalographic Activity Associated with Learning a Novel Motor Task. Research Quarterly for Exercise and Sport, 67(3), 272–279. http://doi.org/10.1080/02701367.1996.10607954

Gonzalez-Rosa, J. J., Natali, F., Tettamanti, A., Cursi, M., Velikova, S., Comi, G., Gatti, R., Leocani, L. (2015). Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis. Behavioural Brain Research, 281, 290–300. http://doi.org/10.1016/j.bbr.2014.12.016

Hallett, M. (1995). The Role of the Motor Cortex in Motor Learning. In Motor Control and Learning (pp. 89–95). Boston: Kluwer Academic Publishers. http://doi.org/10.1007/0-387-28287-4_8

Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage, 67, 283–297.

Haufler, A. J., Spalding, T. W., Santa Maria, D. L., & Hatfield, B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biol Psychol, 53(2–3), 131–160. http://doi.org/10.1016/S0301-0511(00)00047-8

Hazeltine, E., Grafton, S. T., & Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120(1), 123–140. http://doi.org/10.1093/brain/120.1.123

Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222. http://doi.org/S0959438802003070 [pii]

Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445. http://doi.org/10.3200/JMBR.40.5.433-445

Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(02), 187. http://doi.org/10.1017/S0140525X00034026

Jeannerod, M., & Decety, J. (1995). Mental motor imagery: a window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732. http://doi.org/10.1016/0959-4388(95)80099-9

Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994). Motor sequence learning: a study with positron emission tomography. Journal of Neuroscience, 14(6), 3775–3790. http://doi.org/10.1523/JNEUROSCI.14-06-03775.1994

Jia, X., & Kohn, A. (2011). Gamma rhythms in the brain. PLoS Biology, 9(4). http://doi.org/10.1371/journal.pbio.1001045

\Khanna, P., & Carmena, J. M. (2015). Neural oscillations: Beta band activity across motor networks. Current Opinion in Neurobiology. http://doi.org/10.1016/j.conb.2014.11.010

Kranczioch, C., Zich, C., Schierholz, I., & Sterr, A. (2014). Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. International Journal of Psychophysiology, 91(1), 10–15. http://doi.org/10.1016/j.ijpsycho.2013.10.004

Lehéricy, S., Benali, H., Van de Moortele, P.F., Pélégrini-Issac, M., Waechter, T., Ugurbil, K., & Doyon, J. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12566–12571. http://doi.org/10.1073/pnas.0502762102

Lohse, K. R., Wadden, K., Boyd, L. A., & Hodges, N. J. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia. Pergamon. http://doi.org/10.1016/j.neuropsychologia.2014.05.001

Mathewson, K. E., Basak, C., Maclin, E. L., Low, K. A., Boot, W. R., Kramer, A. F., Fabiani, M., Gratton, G. (2012). Different slopes for different folks: Alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. Psychophysiology, 49(12), 1558–1570. http://doi.org/10.1111/j.1469-8986.2012.01474.x

Mcfarland, D. J., Miner, L. A., Vaughan, T. M., & Wolpaw, J. R. (2000). Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements. Brain Topography, 12(3).

Meyer, T., Peters, J., Zander, T. O., Schölkopf, B., & Grosse-Wentrup, M. (2014). Predicting motor learning performance from Electroencephalographic data. Journal of NeuroEngineering and Rehabilitation, 11(1), 24. http://doi.org/10.1186/1743-0003-11-24

Molteni, E., Preatoni, E., Cimolin, V., Bianchi, A. M., Galli, M., & Rodano, R. (2010). A methodological study for the multifactorial assessment of motor adaptation: Integration of kinematic and neural factors. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 4910–4913). IEEE. http://doi.org/10.1109/IEMBS.2010.5627251


Nakano, H., Osumi, M., Ueta, K., Kodama, T., & Morioka, S. (2013). Changes in electroencephalographic activity during observation, preparation, and execution of a motor learning task. International Journal of Neuroscience, 123(12), 866–875. http://doi.org/10.3109/00207454.2013.813509

Özdenizci, O., Yalçın, M., Erdoğan, A., Patoğlu, V., Grosse-Wentrup, M., & Çetin, M. (2017). Electroencephalographic identifiers of motor adaptation learning. Journal of Neural Engineering, 14(4), 046027. http://doi.org/10.1088/1741-2552/aa6abd

Park, J. L., Fairweather, M. M., & Donaldson, D. I. (2015). Making the case for mobile cognition: EEG and sports performance. Neuroscience and Biobehavioral Reviews, 52, 117–130.

Penhune, V. B., & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. The Journal of Neuroscience, 22(4):1397–1406. http://doi.org/22/4/1397

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band - An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1–2), 39–46. http://doi.org/10.1016/S0167-8760(96)00066-9

Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50(1), 57–68. http://doi.org/10.1016/j.brainresrev.2005.04.005

Pitto, L., Novakovic, V., Basteris, A., & Sanguineti, V. (2011). Neural correlates of motor learning and performance in a virtual ball putting task. In IEEE International Conference on Rehabilitation Robotics (Vol. 2011, pp. 1–6). IEEE. http://doi.org/10.1109/ICORR.2011.5975487

Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The Neural Correlates of Motor Skill Automaticity. Journal of Neuroscience, 25(22), 5356–5364. http://doi.org/10.1523/JNEUROSCI.3880-04.2005

Robertson, E. M., Tormos, J. M., Maeda, F., & Pascual-Leone, A. (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cerebral Cortex (New York, N.Y.: 1991), 11(7), 628–35.

Seidler, R. D. (2010). Neural correlates of motor learning, transfer of learning, and learning to learn. Exercise and Sport Sciences Reviews, 38(1), 13. http://doi.org/10.1097/JES.0b013e3181c5cce7.Neural

Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381. http://doi.org/10.1007/s00221-008-1280-5

Shadmehr, R., Smith, M. a, & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. http://doi.org/10.1146/annurev-neuro-060909-153135

Sosnik, R., Flash, T., Sterkin, A., Hauptmann, B., & Karni, A. (2014). The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains. Frontiers in Human Neuroscience, 8, 201. http://doi.org/10.3389/fnhum.2014.00201

Thürer, B., Stockinger, C., Putze, F., Schultz, T., & Stein, T. (2017). Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation. Frontiers in Human Neuroscience, 11, 403. http://doi.org/10.3389/fnhum.2017.00403

Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14(1), 115–120. http://doi.org/10.1038/nn.2693

Wei, G., & Luo, J. (2010). Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Research, 1341, 52–62. http://doi.org/10.1016/j.brainres.2009.08.014

Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B., & Ming, D. (2013). EEG feature comparison and classification of simple and compound limb motor imagery. Journal of Neuroengineering and Rehabilitation. http://doi.org/10.1186/1743-0003-10-106

Yuan, H., Perdoni, C., & He, B. (2010). Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 7(2), 26001. http://doi.org/10.1088/1741-2560/7/2/026001

Zhu, F. F., Maxwell, J. P., Hu, Y., Zhang, Z. G., Lam, W. K., Poolton, J. M., & Masters, R. S. W. (2010). EEG activity during the verbal-cognitive stage of motor skill acquisition. Biological Psychology, 84(2), 221–227. http://doi.org/10.1016/j.biopsycho.2010.01.015

Zhu, F., Poolton, J., & Masters, R. (2002). 8 Neuroscientific aspects of implicit motor learnig in sport. Working memory’s neural network. Masters & Poolton Masters & Eves Masters & Poolton.

Imagery & Visualization in Motor Learning

Bai, O., Huang, D., Fei, D. Y., & Kunz, R. (2014). Effect of real-time cortical feedback in motor imagery-based mental practice training. NeuroRehabilitation, 34(2), 355–363. http://doi.org/10.3233/NRE-131039

Butler, A. J., & Page, S. J. (2006). Mental Practice With Motor Imagery: Evidence for Motor Recovery and Cortical Reorganization After Stroke. Archives of Physical Medicine and Rehabilitation, 87(12 SUPPL.), 2–11. http://doi.org/10.1016/j.apmr.2006.08.326

Etnier, J. L., & Landers, D. M. (1996). The influence of procedural variables on the efficacy of mental practice. Sport Psychologist, 10(1), 48–57.

Gehr, T. (2016). Electroencephalogram (EEG) Classification. Galvanize-Denver, Bootcamp. (Unpublished Poster)

Gonzalez-Rosa, J. J., Natali, F., Tettamanti, A., Cursi, M., Velikova, S., Comi, G., Gatti, R., Leocani, L. (2015). Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis. Behavioural Brain Research, 281, 290–300. http://doi.org/10.1016/j.bbr.2014.12.016

Gregg, M., Hall, C., & Butler, A. (2010). The MIQ-RS: A suitable Option for examining movement imagery ability. Evidence-Based Complementary and Alternative Medicine, 7(2), 249–257. http://doi.org/10.1093/ecam/nem170

Grouios, G., Mousikou, K., Hatzinikolaou, K., Semoglou, K., & Kabitsis, C. (1997). The effect of a simulated mental practice technique on free throw shooting accuracy of highly skilled basketball players. Journal of Human Movement Studies, 33(3), 119–138.

Hinshaw, K. E. (1991). The Effects of Mental Practice on Motor Skill Performance: Critical Evaluation and Meta-Analysis. Imagination, Cognition and Personality, 11(1), 3–35. http://doi.org/10.2190/x9ba-kj68-07an-qmj8

Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445. http://doi.org/10.3200/JMBR.40.5.433-445

Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(02), 187. http://doi.org/10.1017/S0140525X00034026

Jeannerod, M., & Decety, J. (1995). Mental motor imagery: a window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732. http://doi.org/10.1016/0959-4388(95)80099-9

Malouin, F., Jackson, P. L., & Richards, C. L. (2013). Towards the integration of mental practice in rehabilitation programs. A critical review. Frontiers in Human Neuroscience, 7, 20. http://doi.org/10.3389/fnhum.2013.00576

Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64(1), 17–24. http://doi.org/10.1111/j.2044-8295.1973.tb01322.x

Marks, D. F. (1999). Consciousness, mental imagery and action. British Journal of Psychology, 90, 567–585. http://doi.org/10.1348/000712699161639

Mcfarland, D. J., Miner, L. A., Vaughan, T. M., & Wolpaw, J. R. (2000). Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements. Brain Topography, 12(3).

Taktek, K. (2004). The effects of mental imagery on the acquisition of motor skills and performance: A literature review with theoretical implications. Journal of Mental Imagery, 28(1–2), 79–114.

Weinberg, R. (2008). Does Imagery Work? Effects on Performance and Mental Skills. Journal of Imagery Research in Sport and Physical Activity, 3(1). http://doi.org/10.2202/1932-0191.1025

Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B., & Ming, D. (2013). EEG feature comparison and classification of simple and compound limb motor imagery. Journal of Neuroengineering and Rehabilitation. http://doi.org/10.1186/1743-0003-10-106

Yuan, H., Perdoni, C., & He, B. (2010). Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 7(2), 26001. http://doi.org/10.1088/1741-2560/7/2/026001